代写MAT 265: Calculus for Engineers 1调试R语言程序

- 首页 >> C/C++编程

MAT 265

MAT 265: Calculus for Engineers 1 (On Demand - 24-02)

On behalf of your instructional team and your ASU support staff, we're committed to making this course as welcoming, meaningful, and flexible to your needs and interests as possible. This syllabus is an outline of the expectations we have for you as the learner and what you can expect from the course and our team.

We're thrilled to have you in the class, and we welcome any and all questions in your Get Help: Course Questions & Answers linked in the Welcome Module.

Course Overview

Course Description:

Topics covered in this course include: Limits and Derivatives of Algebraic, Logarithmic and Exponential Functions; the Definite Integral, Analysis of Graphs, Optimization, Applications of the Derivative, and more.

Content in this course will be adaptive, allowing you to achieve mastery in a certain concept before moving on to the next. Utilizing Gradarius, a Calculus learning platform, students in this personalized course will be instructed on the topics they are ready to learn while also providing individualized coaching as they move through each topic.

This 3-credit-hour course satisfies the Mathematical Studies (MA) general studies requirement at Arizona State University. This course may satisfy a general education requirement at other institutions; however, it is strongly encouraged that you consult with your institution of choice to determine how these credits will be applied to their degree requirements prior to transferring the credit.

General Studies:

General Studies Gold

Required for undergraduate students in 2024 or later catalog years.

MATH: Mathematics

Credits: 3

Recommended Prerequisites: It is recommended to have passed MAT 117, 119, 170, or 171 with C or better or ALEKS score of 61 or higher.

Course Learning Outcomes

By engaging in this course, you will be equipped to more confidently and successfully:

·  Meaning and computation of average rate of change, and applications

·  Meaning and computation of instantaneous rate of change, and applications

·  Marginal analysis

·  Meaning and computation of accumulation, and applications

·  Techniques to solve optimization problems, and applications

Learning Objectives

At the completion of this course, students should be able to show a mastery of these concepts:

1. Approximate a limit at a point numerically with a calculator.

2. Find a limit at a point rigorously through common algebraic processes or with the squeeze theorem.

3. Continuity of a function at a point.

4. Be able to determine when a limit does not exist, including going to plus or minus infinity and find the limit at infinity

5. Derivatives and Rates of Change.

6. Find the derivative of a function using the limit definition.

7. Compute the derivative of a function at a point using the limit definition.

8. Find the derivative of all of the basic functions.

9. Use the rules of differentiation (sum/difference, constant multiplier, product, quotient, and chain rule) to differentiate combinations of functions.

10. Find an equation of the line tangent to a curve, whether the curve is given explicitly or implicitly.

11. Related Rates and linear approximations and differentials.

12. Exponential, Logarithmic, Inverse Functions.

13. Derivative of Logarithmic and Exponential Functions.

14. Find the value of the derivative of the inverse of a function at a point.

15. Find the value of a limit using L’Hôpital’s rule.

16. Use the derivative to graph a function, labeling local extrema and inflection points.

17. Mean value theorem.

18. Solve optimization problems.

19. Find antiderivatives of basic functions.

20. Approximate the area or distance traveled of a function (velocity) using a small Riemann sum.

21. Evaluate definite integrals using the fundamental theorem of calculus.

22. Find antiderivatives of functions using the fundamental theorem of calculus.


站长地图